仿蛛丝微纤维:“凭空取水”能力超强
原标题:仿蛛丝微纤维:“凭空取水”能力超强
孟涛教授团队通过在仿蛛丝微纤维内部构建中空结构,让纤维的集水性得到显著提升。研究发现,该仿生微纤维悬挂液滴体积是纺锤节体积的1663倍,集水能力数值远超出已有文献报道的数值。
淡水资源的短缺已成为制约全球社会和经济发展的主要因素。据统计,海水资源占到了地球上所有水资源的96.54%,淡水资源仅占2.53%,而且只有0.36%的淡水资源能够被人类直接利用,如何获取更多的可利用淡水资源,是一个亟待解决的问题。
近日,国际化学领域期刊《材料化学学报》A刊报道了西南交通大学孟涛教授团队的研究成果——利用具有中空连续通道的仿蜘蛛丝微纤维进行高效集水,团队通过在仿蛛丝微纤维内部构建中空结构,让纤维的集水性得到显著提升,研究发现,该仿生微纤维悬挂液滴体积是纺锤节体积的1663倍,集水能力数值远超出已有文献报道的数值。
来自蜘蛛丝纤维结构的启示
目前,由于水污染和淡水资源缺乏等问题,水资源危机越来越受到广泛关注。由于海水淡化和废水处理技术的适用性、简便性和成本效益等问题,使得一些地方无法使用这些技术获取淡水资源。这些年,各领域的科学家们试图从大自然中获取灵感,研究仿生集水技术。
自然界中,大多数生物都拥有应对恶劣环境的独特本领,经过长期的自然选择,一些生物已经能够从雾气中获得水分供自身生存,这为淡水收集系统中功能仿生材料的设计和制造提供了灵感。迄今为止,研究者们已经利用纳米布沙漠甲虫的集水机理、仙人掌的集水机理以及蜘蛛丝的表面集雾机理等,开发出了大量相应的仿生集水材料。
雨后的清晨或者潮湿的角落,人们常常可以发现蜘蛛网上悬挂着大量晶莹的液滴。研究发现,实际上,蜘蛛丝有强大的集水功能,而其集水能力归因于一种独特的纤维结构,该结构由周期性纺锤节和关节构成,其中纺锤节由随机杂乱的纳米纤维组成,关节则由排列整齐的纳米纤维组成。当从干燥条件转化为潮湿条件下时,蜘蛛丝的结构会产生变化出现纺锤节(可以储水)。当微小的水滴在蜘蛛丝上凝结后,将在驱动力作用下向纺锤节方向运动,实现集水。
受天然蜘蛛丝启发,研究者们计划制备模仿蜘蛛丝结构的微纤维,从大气中收集淡水。但近年来的研究集中在通过调控纤维表面形貌来提升毛细作用力,这种方式对于纤维集水性能提升有限。因此,目前提高微纤维的集水能力仍然是一个持续的挑战。
中空微纤维展现更优异集水性能
基于此,西南交通大学孟涛教授团队从内部结构出发,探究纤维集水性能的改善方法。在研究过程中,团队尝试了油水体系和气液体系的微流控等技术,开展了大量实验,均未达到理想效果。
最终,研究团队从细胞内外水相分区的结构中得到启发,使用基于双水相层流的微流控纺丝技术,利用了双水相分区效应的机理,在界面上快速交联形成了纤维,并阻止了后续物质的扩散和继续反应,形成了仿蛛丝中空微纤维。孟涛表示:“我们将仿蛛丝中空微纤维与仿蛛丝实心微纤维在相同条件下进行对比集水实验,证明了中空结构增强了纤维的集水性能,仿蛛丝中空微纤维的集水能力更好更优秀。”
为何相比于实心纺锤节微纤维,仿蛛丝中空微纤维能展现出更加优异的液滴悬挂能力呢?“由于中空通道的存在,延长了液滴与纤维间的三相接触线长度,增强了液滴受到的毛细作用力,从而提高了纤维悬挂液滴的能力。”孟涛解释说,液滴悬挂在中空微纤维时,中空通道内的液柱形成毛细桥,液柱两端半月板状凹陷为悬挂的液滴提供了额外的毛细作用力,这种作用力对于提升悬挂液滴的能力有着重要的贡献。