在集成电路基础研究中奋力攀登(科技视点·科技自立自强青年奋勇担当①)(2)

光山新闻网 采集侠 2022-12-05 06:58:07
浏览

  传统晶体管的功耗降低受制于一个物理极限——玻尔兹曼亚阈值摆幅极限。传统的MOSFET(金属—氧化物—半导体场效应晶体管)器件的亚阈值摆幅,在室温理想情况下的极限为60mV/dec。这意味着,获取3个数量级的输出电流开关比需要至少180mV的电源电压。该限制使得以MOSFET器件为基础的集成电路芯片不能无限制地通过减小工作电压来降低功耗。另一方面,为保证晶体管足够的电流驱动能力,需要在降低电源电压的同时降低MOSFET器件的阈值电压,但这又会引起器件关态电流的升高,导致静态功耗增加。

  要解决这个矛盾,就必须要研发具有超陡亚阈值摆幅的新型超低功耗器件。基于量子带带隧穿机理的硅基隧穿场效应晶体管,当时国际同行已研究了五六年,其好处在于:理论上可以突破传统MOSFET的亚阈值摆幅极限,而且关态电流还特别低,对于静态功耗占主导的低频应用来说,有望大幅降低芯片功耗。

  不过,有一利必有一弊:由于硅基隧穿场效应晶体管采用的是量子带带隧穿机理,所以其隧穿电流就会受限于隧穿几率,没有传统MOSFET的驱动电流高。而开态电流在很大程度上决定了晶体管运行的速度快慢——开态电流太低,性能就难以满足需求。

  如何在保证极低关态电流优势的同时,解决开态低的问题?在两位老师的指导下,黄芊芊和同伴们提出了一种开创性的新理论——“混合控制”:采用传统肖特基注入机理解决开态低的问题,同时利用隧穿机理实现低关态和超陡亚阈值摆幅。

  为验证这个新理论,黄芊芊花了整整一年时间,从头到尾做了一次完整的实验。那一年,她基本上是“白加黑”、连轴转:白天跑工艺间做实验,晚上总结经验教训。到紧要阶段更是常常连熬几个通宵。一年下来,人整个瘦了一圈。

  有心人,天不负。最终的实验结果证明:“混合控制”的理论在实验上行得通!

  另一个更实际的问题摆在面前:如何在工艺上做出非常陡的隧穿结?要知道,常规工艺较难做出理想陡峭的隧穿结,如果工艺上做不出来,就只能是纸上谈兵。这也是当时国内外同行报道的亚阈值摆幅比理论预期要差很多的关键所在。

  针对现有工艺条件对亚阈值摆幅的限制,黄芊芊和同伴们提出了一个新机理——“结耗尽调制效应”:将常规栅结构改为横向条形栅结构,引入自耗尽作用,等效实现陡峭的带带隧穿结,进而显著减小器件的亚阈值摆幅。

  此后,黄芊芊继续攻关,将“混合控制”与“结耗尽调制效应”的优势结合起来,进行结构与技术创新,提出并研制出新型梳状栅杂质分凝隧穿场效应晶体管,在室温下打破了国际上硅基隧穿器件的亚阈值摆幅纪录,器件综合性能为国际报道中同类器件最高。

  抓住关键所在,走产业化之路

  在学校的超净实验室做出隧穿场效应晶体管,只是万里长征的第一步。这个东西最终能不能成,还得在大生产线上做出来才行。

  从2012年开始,黄芊芊与国内某顶尖集成电路制造商(以下简称CMC)合作,把在学校里研发的超低功耗隧穿场效应晶体管,拿到北京亦庄的生产线上去做。

  隧穿场效应晶体管这个技术从结构上看似不复杂,但在国际工业界,仍未能采用标准工艺生产线制造出性能优异的隧穿器件。“上产线到底行不行?”从北大到亦庄有一个多小时的车程,坐在车里,黄芊芊一边忍受着头晕带来的不适,一边心里犯嘀咕。

  在与CMC的技术团队反复交流讨论之后,她对原有的标准生产线工艺做了一些初步的设计调整,进行了几批流片,但是结果都不太理想。