量子互联网:小荷已露尖尖角
原标题:量子互联网:小荷已露尖尖角
近日,美国纽约州立大学石溪分校科学家菲格罗阿等人在一篇发表于《自然·量子信息》上的论文中称,他们通过把两个独立的光子存储在铷气里,首次在室温条件下构建了一个量子存储器网络。鉴于量子存储器是量子互联网的基础性技术,最新研究让我们离量子互联网又近了一步。
中山大学电子与通信工程学院教授孙仕海告诉科技日报记者:“相比于现有经典互联网,量子互联网具有更灵敏的信息获取能力,以及更安全、更快速的信息处理能力。”
鉴于量子互联网的上述优势,美国、欧盟国家的多个研究机构和大企业,已竞相开始构建量子互联网。“但构建量子互联网不可能一蹴而就,还有很多关键技术亟待突破。”孙仕海强调。
信息处理更快更安全
量子互联网究竟是“何方神圣”?
孙仕海介绍:“广义上的量子互联网是采用量子通信连接量子传感器和量子计算机所形成的新一代互联网络,是量子通信网络、量子传感网络和量子计算网络的总称。”
量子计算机和量子传感器等量子设备都利用了量子态的叠加和纠缠两大特性。比特作为传统计算机的基本信息处理单元,只能处于0和1两种逻辑态中的一种。而作为量子信息基本单位的量子比特可以是1、0,以及两者的叠加。因此量子计算机可以用远超传统比特的密度,存储和传输更多信息。量子比特还能发生纠缠,即两个或两个以上粒子之间密不可分的联系。爱因斯坦将量子纠缠称为“幽灵般的超距作用”。
在上述两大特性的加持下,拥有数以百万计量子比特的量子计算机的功能预计会比目前最快的超级计算机强大得多,因为纠缠在一起的量子比特能同时进行更多计算。
菲格罗阿也表示,量子互联网拥有固有的安全性。传统互联网的通信可以被拦截或操纵,但量子纠缠理论提出,对其中一个粒子的任何观测都会瞬间影响到另一个粒子的状态,而任何拦截和读取通过量子网络传输的信息的尝试都等同于观测,这将导致通过线路移动的量子比特叠加崩溃,从而“露出马脚”,因此可被用来检测任何潜在的窃听行为。
美国能源部也曾指出,量子互联网利用量子力学定律,和现有网络相比,能更安全地传输信息,“几乎不可破解”,未来将对科学、工业及国家安全等关键领域产生深远影响。美国芝加哥大学量子研究团队负责人戴维·奥沙洛姆则将量子互联网称为第二次量子革命。
量子互联网提供的安全通信方式有望开辟更广泛的应用领域,远远超出传统互联网的范畴。荷兰代尔夫特理工大学量子信息学教授斯特凡妮·魏纳在接受欧洲《现代外交》杂志采访时指出,如果量子互联网建成了,天文学是可能受益的领域之一。执行远距离观测任务的望远镜可以“利用量子互联网让传感器与传感器发生纠缠,以便生成更清晰的图像”。
波士顿咨询公司的一项调查称,到2030年,后量子密码学和量子通信市场的规模将达100亿美元,与量子计算市场60亿美元到120亿美元的规模相当。
大规模网络建设任重道远
理想很丰满,现实却很骨感。
孙仕海认为,量子互联网的实现有很多关键技术待突破。首先,量子互联网与经典互联网在协议和架构上具有一定的差异,如何构建高效的量子互联网络架构尚在研究中。其次,目前量子通信网络的研究和建设主要还集中在量子密钥分发等安全领域,研究如何使数据更安全传输,而通信网络协议方面的研究还比较欠缺。
“最后,量子互联网建设,除需要量子存储、量子中继等器件突破外,在高亮度纠缠源、高性能单光子探测、光电集成量子态调制解调芯片、针对量子器件的编程软件等方面也亟待突破,需要进一步降低这些器件的体积、功耗、成本等,以满足大规模网络建设需求。”孙仕海进一步解释道。