斯坦福AI模型 炼成小鼠“读心术”
斯坦福AI模型 炼成小鼠“读心术”
读心术真的能够实现吗?近日,据新智元报道,Two Six Labs和斯坦福研究团队利用神经网络实现了对小鼠的“读心”,他们利用网络模型读取小鼠脑内的电信号,预测小鼠的行为和在迷宫中的位置,平均预测误差仅为4厘米。
大脑由相互连接的神经元组成:神经元可以响应输入信息并处于激活状态,反过来激活其他神经元。这些系统的“简化版”就是第一个人工神经网络的灵感来源。斯坦福Schnitzer实验室的研究人员制作了一个数据集,用于监控实验室的小鼠在“竞技场”中移动时的神经活动。
所谓“竞技场”其实是一个带有地标贴纸的小盒子。研究人员通过将一个微型显微镜连接到小鼠的头部,并记录荧光染料的轨迹,这种染料会在单个神经元放电时发出绿光,从而实现记录神经活动的目的。这项技术可以同时跟踪数百个、甚至数千个神经元的活动。
研究人员还训练了一个神经网络,根据最近的神经元放电模式预测小鼠的位置,并使用实验观察结果的前80%作为训练数据,仅给出神经元的活动,来预测后20%观察结果的小鼠位置。在尝试了许多模型体系结构后,研究人员发现具有回归输出层的简单密集神经网络表现最好,平均预测误差仅为4厘米。
据介绍,目前实验室人员正在制作更复杂的行为数据集,以便更好地应用这些方法。比如可以在小鼠通过迷宫时对其进行映射,预测左右转弯,并量化小鼠在学习走迷宫时的不确定性。或识别对小鼠展示哪些主题的图像会刺激到它。实验室研究人员表示,使用小鼠作为研究模型,目的是更多地了解我们自己,希望我们的人工神经网络有助于更好地理解生物的神经网络。
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。