未来航空,打开想象空间

光山新闻网 采集侠 2024-03-21 02:49:02
浏览

原标题:未来航空,打开想象空间

未来航空,会是什么样?从材料到发动机,从通信到能源动力,人们在猜测,颠覆性的改变会从哪里发生?一般来说,材料制造是航空发展的基础,能源动力对飞行器有决定性影响,信息电子将全方位变革传统航空形态……

1.飞行器发展瞄准高能化、智能化

“双碳”目标要求民航向绿色低碳方向发展,民用航空将更环保、更安全、更经济。航空科技发展的总趋势是高能化与智能化复合发展,高能为“体”,智能为“魂”。高能化是对能量、物质的更多掌控,决定了航空装备能达到的物理边界,对飞行高度、航程、速度、机动性等性能指标有直接影响。智能化是对信息域与认知域掌控,决定了航空装备运用的能力,可以实现更高的效率、更准的决策。

航空高能化主要包括高动能、高供能、高效用能等方面。

高动能,主要对应航空平台的技术革新方向。高速飞行、超机动性、长时间滞空等都是其发展的核心诉求,速度从亚声速、超声速到高超声速,高度从低空、中空到高空、临近空间,留空时间从数小时、几十小时至数天等。高动能在航空领域可发挥重要作用,如低声爆超声速民机的应用等。

高供能,主要对应航空动力的技术革新方向。大推重比、高燃油效率、高功率提取及新能源体系正成为航空动力系统的主要发展趋势,包括进排气的主动流动控制、高压比压气系统、新概念动力系统等相关技术都是目前航空动力研究的热点方向。此外,电动飞机和氢动力技术也将成为低碳化的前沿领域,为未来民航业创造更大的环保和经济潜力。

高效用能,主要对应航空机电的技术革新方向。其中,多电/全电技术、全机能量优化、变革性能量传输与存储等将在航空电力电气系统中发挥关键作用,从而大幅提高飞行器的性能水平。

航空智能化的核心在于使飞行器具备自主感知、自主决策、自主执行、自主进化能力。

自主感知使飞行器通过各类传感器和数据融合完成复杂环境和目标的分类、识别,生成能用于决策的信息;自主决策可充分发挥人工智能在信息处理速度和处理量方面的优势,综合利用感知信息和决策算法,在各种复杂场景中快速作出利益最大化的决策,实现“机主人辅”甚至“完全自主”;自主执行能使人类从下达操作指令转变到下达任务指令,机器自主进行任务规划,并在执行过程中实时调整,最终替代人在任务执行中的作用;基于“自主遗传进化”算法,自主进化可使智能飞行器具有生命体特征,认知决策水平可通过不断学习而实时进化,自主提升能力,以应对全新环境。

应该说,智能化将大幅提高飞行器在不同环境中的感知、决策、执行、学习能力,将为未来航空打开更大的想象空间。

2.超材料、智能结构或将带来颠覆性改变

航空领域素有“一代材料一代装备”的说法,可见材料属性对飞机性能至关重要。另外,航空工业本质上是高端装备制造业,制造技术对于实现稳定的大规模批产举足轻重。随着技术的发展,航空工业正迈入材料、制造一体化时代,也使材料制造领域成为涌现颠覆性技术的重要来源。

超材料是一种通过人为设计内部结构,实现超常物理性能的人造材料,其基本结构单元尺度小于它作用的波长,从而可控制光波、无线电波和机械波传播,典型超材料包括左手材料、光子晶体及声子晶体等。

左手材料是一种可调控电磁波的电磁超材料,其介电常数和磁导率皆为负值,具有负折射、逆多普勒效应、逆切仑科夫辐射和亚波长衍射等特性;光子晶体是一种可控制光子流动的光学超材料,用于光纤、微带天线及滤波器等,具有低损耗、大带宽、高增益等性能;声子晶体是一种可调控弹性波传播的机械/声学超材料,其带隙可抑制弹性波在一定频率范围内不能传播,可实现减震和降噪。

超材料技术实现了功能到结构的逆向设计,对航空领域可能产生诸多潜在的颠覆性影响:

——构造能实现完美隐身的超材料“隐身斗篷”和超材料吸波体,大幅提高飞行器的隐身性能;

——制造小型射频天线和超分辨率成像系统,有效强化探测跟踪能力;

——将平面传输天线与超材料耦合设计,可提高天线辐射效率并缩小尺寸,推动航空装备微波射频组件的小型化、集成化发展。