医疗AI:管好才能用好(2)

光山新闻网 山阴新闻网 2019-03-29 09:13:59
浏览

“AI产品的标准由人设定,其中既有医生,也有相关的技术专家。”柯鑫指出,缺乏交叉性的专业人才,是当前医疗AI领域存在的问题之一。医疗AI产品若想扩大影响力,还须开发者本身有过硬的医疗知识储备。

柯鑫还提到,目前的医疗AI产品大多起辅助作用而非完全替代医生。而检测产品可靠性的手段之一是“向医生看齐”——将诊断结果与医生的诊断标准相比较。

以该公司旗下的眼底筛查产品为例,在阅片平台上,有问题的眼底图像会传送到医生手中进行辨别。除了医院外,面对体检中心、社区等应用场景,业内专家的评价结果是推广产品时重要的认证手段。

算法迭代

按目前国内对于医疗AI器械的审批流程,临床试验设计应考虑到产品预期用途、使用场景和核心功能。

而为鼓励创新并降低临床试验成本,临床试验可使用回顾性数据。对于中风险等级软件,可采用临床预试验或替代临床试验;高风险等级的软件,可采取临床预试验或临床试验补充。

在软件更新方面,审批内容包括重大软件更新和轻微软件更新。前者涵盖算法和数据驱动型软件更新,须进行许可事项变更,开展算法性能再评估和临床再评价。

针对算法的评估,Parikh等人也提到,如果是基于临床医生主观数据的预测算法,主观数据对某一类患者产生的偏见也可能被纳入运行标准。因此除了疗效指标,对AI算法的评估还应考虑是否会对这些偏差进行有效干预。

此外,只有提供适当的数据训练算法,才有可能更准确地掌握其性能。

比如一种可以识别败血症的AI算法反应速度比医生还快,但医生识别出相应症状后会作出让患者服用抗生素的决定,要完成上述动作,就需要进一步迭代算法,相应的训练数据也会发生变化。

因此,Parikh等人指出,训练和评估算法不仅应根据临床医生的最佳判断,还应在多种环境下进行测试。在评估标准中,除了临床医生和AI的单独表现外,或许还应加设一类,即将二者结合起来。这也凸显了医疗AI与临床医生之间相辅相成的关系。

此外,Parikh等人还提到,随着申报审批的AI设备增多,监管机构需要在透明度和知识产权间权衡。这就像新药研发与新药审批,通常会找到一个适当的平衡点。

《中国科学报》 (2019-03-29 第3版 国际)