AI进入下半场目标瞄准“举重若轻”“大材小用”(2)
“虽然执行神经网络计算的是硬件,但神经网络结构和人工智能平台决定了计算量的大小和运算方式。”冷聪坦言,所以极致的轻量化必须是软件和硬件的协同轻量化——基于复杂的人工智能应用场景,将芯片、平台和算法充分结合以联合加速。
作为人工智能的硬件载体,人工智能芯片必须达到更高的性能、更高的效率、更低的功耗和更小的体积。这样才能有足够平价高效的计算平台满足产业需求,承载复杂的人工智能任务,并且使推理和运算从云端迁移到终端。
同时,轻量化的人工智能平台要以更低的功耗来训练和运行人工智能算法,最大化的发掘硬件的能力。更重要的是,应用轻量化技术的神经网络模型要小规模、少运算量并保持良好的精度。
未来轻量化人工智能将赋能万物
程健介绍,中国科学院自动化研究所是轻量化人工智能的先行者,很早就开始了软硬协同轻量化的技术研究,并走在国际前列。
早在2016年,卷积神经网络大规模迈向应用之初,中国科学院自动化研究所就在国际人工智能顶级期刊发表了多篇神经网络模型轻量化领域的重要论文,成为国际上最早开始人工智能轻量化研究的机构之一,相关成果引起了国内外诸多专家的广泛关注。
“我们设计开发的轻量化人工智能平台QEngine及轻量化算法已经在数十万终端上部署。2019年,在国际神经信息处理系统大会的微型网络挑战竞赛中,我们与ARM、IBM、高通、Xilinx等国际一流芯片公司同场竞技,获得了轻量化神经网络架构图像类的双冠军。”程健表示。
2020年,中国科学院自动化研究所自主研发的全球首款极低比特量化神经处理芯片(QNPU)成功流片,绕开了芯片计算领域备受关注的“内存墙”难题,在芯片成本、功耗、计算结构、边缘计算等方面实现革命性的变革。
“该芯片的面世,也标志着自动化研究所成为了全球为数不多的拥有‘人工智能芯片—平台—算法’全栈轻量化人工智能技术的机构之一。”冷聪说。
未来,以人工智能驱动的小型化设备会越来越多出现在我们身边。由人工智能芯片、平台和算法组成的轻量化人工智能终端将在越来越多的场景中应用。
“比如,在电力行业,我国的输电线路覆盖广,野外自然环境复杂,检修维护作业危险系数高、难度大,我们设计的自主巡检无人机、缺陷识别分析便携终端、通道可视化智能感知摄像头具备多种智能识别、检测和分析功能,能够保障输配电线路的安全和电力系统稳定。”程健举例说。
同时,在消费电子行业,暗光增强、超分辨率等自动化所设计的轻量化算法及轻量化神经网络计算架构,也为手机终端、安防终端提供了影像增强效果。
程健表示,轻量化人工智能未来将赋能万物,让每个设备都具有环境感知、人机交互、决策控制的能力。
(责编:王震、吕骞)