“天宫”掀起太空动力变革(筑梦“太空之家”——中国空间站建设记④)(2)
2020年1月,中国航天科技集团发布消息称,我国首款20千瓦大功率霍尔电推进器成功完成点火试验,标志着中国霍尔电推进器推力从毫牛级实现向牛级跨越,性能达到国际先进水平。今年4月29日,随着空间站天和核心舱发射入轨,中国空间电推应用实现新突破。据了解,核心舱配备了4台霍尔电推进器,它们可以从核心舱宽大的太阳能翼获得充足的电能,根据需要,适时启动并可长期运行,将对空间站轨道维持和安全平稳飞行起到重要作用,可大大降低天宫空间站的燃料消耗。
多国竞相探索应用
空间电推进从提出至今已有100多年了。20世纪初,现代宇宙航行学奠基者、俄国人康斯坦丁·齐奥尔科夫斯基在一篇论文中提出空间电推进概念,他在随后的论文中进一步指出,通过电可以产生强有力的氦离子流,用于驱动宇宙飞船。在其后不久,液体火箭发明者、美国人罗伯特·戈达德制造出可产生“带电粒子”设备并获得了“产生带电气体射流的方式方法”发明专利。随后,世界多国科学家展开了长期研究,旨在研发高效的空间电推进系统并付诸应用。
康小录表示,上世纪80、90年代,空间电推方式在美苏得到一定应用。一些卫星平台以电推进来执行位置保持任务。比如,1982年,苏联一款电推进系统成功应用于一颗卫星位置保持。新世纪,空间电推进应用继续拓展,2001年,欧洲发射的“阿特米斯”卫星最终依靠电推进入预定轨道。2003年,欧洲依靠电推进实施了月球探测任务。同年,日本发射“隼鸟号”小行星探测器,在最后阶段,使用电推完成任务并返回。
值得注意的是,长期以来,空间电推进系统产生的推力很有限,停留在毫牛级,被戏称仅能“推动一张纸”。比如,日本“隼鸟号”小行星探测器使用的电推进器的推力不到30毫牛,美国波音公司702卫星平台上使用的电推进器推力为165毫牛。空间电推进系统主要用于航天器的姿态控制、轨道修正和轨道维持等对推力要求不高的任务。
(责编:赵欣悦、白宇)