工业智能技术加速风电行业智能化建设“三重奏”(2)
一个模型的诞生就像婴儿一样,成长的过程中需要接受教育、做练习题,最终毕业,成人。模型类似,也要通过不断的跟领域知识磨合和融入,在能够采集更多样本的情况下不断迭代,最终才能形成一个比较成熟的模型。
“因此,我们需要一个基础设施,能够对模型的全生命周期进行管理。基于这样的理念,我们开发了一套完整的工业智能模型研发平台,从算法的设计、探索、验证,以及监控和部署,形成一套完整的闭环。通过这样的一个工业智能模型研发平台,有效地解决了工业领域常常谈到的‘建模难、用模难、管模难’的问题,极大提升了模型的研发效率、降低了维护成本。” 金超说。
智能化落地是跨领域跨技术的系统工程
在落地工业智能的时候,除了数据跟模型这两个要素之外,还有系统工程能力。也就是,如何能够把分析技术(AT),数据技术(DT),平台技术(PT)以及运维技术(OT)这四类整合起来。
“在DT层,即数据技术这一端,要能实现设备的物联以及边缘计算,将孤岛系统中的数据统一管理。在AT层,需要对模型的建立、管理、部署和服务化都进行全面的管控。最后跟信息系统以及运维系统形成融合。从DT到OT的工业智能系统,模型只是AT层的一小部分。系统建立起来,才是工业智能服务的开始。从数据到业务的闭环、不断积累企业自己的知识资产,才是运营一个工业智能系统最需要关注的,而非仅仅建模。”金超说。(记者 马爱平)
(责编:赵竹青、陈键)