为什么AI很火,落地却很难(2)
如何才可能让整个AI落地的成本快速降到有商业价值的水平?“需要让这些要素并行发展,不用在任何时候都要顾及所有要素。也就是说,算法专家不用关心应用是什么情况,设备供应商也不用关心算法问题,把这五个要素进行解耦,让一个要素相对其他几个要素变得更加透明。从思路上看,这有点像PC操作系统,把鼠标、键盘等所有设备之间的复杂度都通过一个标准化的协议屏蔽掉,让它们之间能够互相解耦,各自专注自己擅长的方向,以降低各个方面的成本。只有这样AI才能真正规模化,实现商业上的成功。”谭茗洲说。
储备懂AI思维及语言的人才
什么样的应用才是真正的AI应用?“未来还是要结合场景和用户体验去重新设计,用AI本身的方式思考,才会产生真正的AI应用。”云知声董事长兼CTO梁家恩认为,未来5年会有真正的AI应用出现,AI的能力也会发挥到极致。到时候,AI作为一项“背后的技术”已经普及而且消费者将会对其毫无感知——因为技术应用的最高境界是技术变得无感。
人工智能专家丁磊在其新作《AI思维》中强调,AI不只是一个技术、工具,更是一种思维方式,它能够帮助我们有效分析大量的数据,并从中得出预测,甚至帮助我们做出决策。那么,在AI落地过程中,储备真正懂得AI思维、AI语言的人才,就显得尤为重要。
实际上,在大部分的企业场景下,都是工程师、科学家讲一套语言,而业务负责人讲另外一套语言,相互之间没有一个很好地交流通道。这种状态进一步导致了AI的落地难。
谭茗洲说,有经验的人工智能专业人员很难聘请,这对于所有行业的企业来说都是个难题。实施AI项目通常需要建立一个由数据科学家、ML工程师、软件架构师、BI分析师和中小企业相关人员组成的跨学科团队。并且AI落地过程中关键需要加大对企业老板或者业务负责人,甚至包括部分一线业务负责人在AI思维上的提升和教育。当这些人真正地理解AI数据思维的闭环逻辑时,再进行AI落地就会顺利很多。
建设高端人才队伍,开设人工智能专业的高校无疑是“冲锋军”。如今,一些高校开始注重培养学生跨学科意识,结合自身特色专业,制定有关“人工智能+”的培养计划。
谭茗洲表示,AI教育从本质上来说,不是知识层面的教育,而是思维能力、思维方式的教育。应该从小抓起,帮助广大青少年树立AI意识,不断提升他们的科学素养,并激发其对人工智能的兴趣与热爱。目前中小学开展的人工智能相关课程,偏向于基础性编程教育,通过模块化操作,实现一些智能功能,例如让机器人踢足球、行走等,这样可以帮助青少年培养机器学习的思维,让中小学生对人工智能建立初级认知。
(责编:赵超、陈键)