重离子束:打败癌细胞的新一代“杀手”(2)
这个“神奇”的现象引起了科学家的注意。1946年,美国人威尔逊首次提出用布拉格峰进行肿瘤放疗,他认为,带电粒子束进入人体后不会像传统射线那样在沿途不断地释放能量,而会在某一特定深度(即肿瘤部位)释放几乎全部的能量。
这就意味着,带电粒子束比传统放疗所使用的X射线、伽马射线更具优势。同样在美国,1975年劳伦斯伯克利实验室 (LBNL)实践了首例使用重离子束对肿瘤放疗的案例。
此后,日本、德国、中国相继开展重离子束治疗肿瘤的研究。
那么,这个叫重离子束的新一代“杀手”,在面对肿瘤时都升级了哪些技能?
精确区分敌我。这个技能叫作独特的深度剂量分布。重离子束在穿越生物组织的过程中,沉积的剂量较小(坪区),也就是说在穿透过程中,重离子束只是路过并不施加伤害,这样的话,正常细胞终于可以不再躺枪,有利于保护正常组织和关键器官;当它到达癌细胞时,才开始放大招杀敌,就是所谓的剂量主要沉积在射程末端(峰区),这个现象就是前文提到的“布拉格峰”。
因此可以通过调节重离子的能量,使布拉格峰精确落在肿瘤处,从而进行精准杀灭,同时关爱健康组织。值得指出的是,布拉格峰现象是重离子束的自身属性,简直是射线界“天使”。
治疗周期更短。这个技能叫作相对生物学效应(RBE)高。重离子束进入生物组织后,在“峰区”,也就是癌细胞聚集的地方,沉积的能量密度高,能量密度高就代表着强大的杀伤力,这会使得癌细胞DNA产生双链断裂的比例较高。都双键断裂了,癌细胞再想恶性繁殖也是很难很难了……
重离子的相对生物学效应到底有多高呢?重离子相对生物学效应比常规光子射线的要高约3倍。因而,重离子束对癌细胞的“杀伤力”更大,治疗次数相应减少,从而缩短治疗周期。
对氧依赖小,敏感性更强。这个技能叫作氧增比(OER)小。大量证据表明,肿瘤生长于特有的异常血供系统,从而导致对肿瘤细胞的供氧和养分不足,称之为乏氧细胞。然而,常规射线对于这些乏氧细胞并不敏感,如何提高瘤内乏氧细胞的放射敏感性也是肿瘤放疗的一个重要问题。
与常规光子放疗不同,重离子束对肿瘤细胞的杀伤不依赖于氧的存在。因为重离子主要是通过电离形成的高密度二次电子的电离作用导致DNA双键断裂来杀灭癌细胞,重离子的氧增比小,可用于治疗供血不足的乏氧肿瘤。
成像看得见,治癌精度高。这个技能叫作PET在线剂量验证。重离子束与生物组织的原子核相互作用后会产生正电子发射体,利用正电子发射体层技术(PET)进行外部成像,并与治疗计划的CT图像比对,可以对重离子束照射到体内肿瘤的剂量分布进行在线验证,保证治疗的安全性。
正是以上四大技能,将重离子束控制在毫米级范围内,精确有效地杀灭肿瘤细胞,且对周围健康组织的损伤达到最小,特别是对于不宜手术、对常规射线不敏感、常规射线治疗后复发的部分肿瘤,均可接受重离子束的治疗。
如果用一句话概括,那就是重离子放疗精度高、疗程短、疗效好、副作用小。因此,由于自身独特的物理和生物学特性,重离子束被认为是21世纪最理想的放疗射线,通常选碳离子束作为重离子放疗射线。
重离子束治疗:从基础研究走向产业化
现代基础研究到产业应用,往往涉及多学科交叉,需要先进的科学装置,这需要科研团队多年的努力和实验投入。