人造太阳,点亮人类能源梦想(开卷知新)

光山新闻网 采集侠 2021-09-14 07:12:01
浏览

人造太阳,点亮人类能源梦想(开卷知新)

 

  图①为科研人员在全超导托卡马克核聚变实验装置真空室工作。
  图②为新一代“人造太阳”中国环流器二号M装置。
  图片来源:影像中国

 

  万物生长靠太阳。科学家们长期致力于利用太阳发光发热的原理,为人类开发一种源源不断的清洁能源。因此,在地球上以探索清洁能源为目标的受控核聚变研究装置又被称为“人造太阳”。聚变燃料氘可以从海水中提取,一升海水中的氘发生聚变反应释放的能量相当于燃烧300升汽油。有人甚至说,聚变能一旦实现,人类的文明发展将不再受制于能源。我们可以在寒冷的冬天种植热带水果,全天候不间断地为粮食作物提供光源,星际旅行也将不再是梦想。

  2020年中央经济工作会议提出:“我国二氧化碳排放力争2030年前达到峰值,力争2060年前实现碳中和。”能源安全、环境问题和气候变化等问题日益突出,成为21世纪人类社会面临的最严峻挑战之一。核聚变能以其资源丰富、环境友好和固有安全性等优势将成为人类未来的理想能源,是目前认识到的解决人类社会能源与环境问题的终极途径之一,是实现碳中和目标的有效技术方案之一。我国核能发展“热堆—快堆—聚变堆”三步走战略中,将聚变能作为解决能源问题的终极目标。

  “人造太阳”从“核”而来

  众所周知,原子能的利用包括核裂变和核聚变。核裂变是将较重的原子核分裂为较轻的原子核并释放出能量。而核聚变则是将较轻的原子核聚合反应而生成较重的原子核,并释放出巨大能量。太阳等恒星之所以发光发热,正是因为其内部持续不断地进行着轻核间的核聚变反应。人类在上世纪50年代初成功试爆了第一颗氢弹,但氢弹爆炸是不可控的核聚变反应,不能作为提供能源的手段。自那以后,人类便致力于受控核聚变研究。

  受控核聚变实现的方式主要有两种——磁约束核聚变和惯性约束核聚变。其中磁约束核聚变是用强磁场来约束高温核聚变燃料。实现受控核聚变的条件十分苛刻,一是燃料需达到极高的温度(1亿摄氏度以上),但极端高温下的燃料无法用普通固体容器来盛装,为此,科学家们提出用强磁场的方式来约束处于极高温下的聚变燃料;二是具有足够的密度,从而提高燃料原子核之间碰撞而发生核聚变反应的概率;三是具备足够长的能量约束时间,将高温高密度的核反应条件维持足够长的时间,才能使核聚变反应得以持续进行。也就是说,燃料离子温度、密度、能量约束时间,这三个参数的乘积(“聚变三乘积”)必须达到一定值,才能满足聚变“点火”条件,实现受控核聚变。因此,核聚变原理虽然简单,但聚变能开发却面临一系列科学技术挑战。

  国际磁约束受控核聚变研究始于上世纪50年代,经历了从最初的少数几个核大国进行秘密研究、技术解密,再到世界范围内开放合作、共同参与的研究阶段。在研究进程中,也先后探索了箍缩、磁镜、仿星器、托卡马克等众多途径,目标都围绕如何提高等离子体的关键参数,最终满足受控核聚变反应的条件。从上世纪70年代开始,托卡马克途径逐渐显示出独特优势,成为磁约束核聚变研究的主流途径。国际磁约束聚变界通过几十年努力,在核聚变研究领域取得了重大进展,装置的“聚变三乘积”提升了几个数量级,但要实现受控核聚变,关键技术上仍存在很大挑战,需凝聚全世界之力共同攻克。1985年,国际热核聚变实验堆(ITER)计划提出,其目的就是希望通过国际合作,建造一座核聚变反应堆,以验证核聚变能和平利用的科学可行性和工程技术可行性。