超大质量黑洞:星系中心的“怪兽”(2)
也正是类星体能源问题的讨论,促使英国数学物理学家彭罗斯在1965年重新考虑大质量天体引力塌缩形成奇点的问题——他利用广义相对论证明黑洞奇点的形成是不可避免的,对黑洞形成理论作出了重要贡献,也因此获得2020年诺贝尔物理学奖。
1969年,英国科学家林登贝尔提出围绕黑洞运动的吸积盘概念并计算了黑洞吸积的辐射强度,进一步确认类星体巨大能量的来源是被超大质量黑洞所吸积的物质释放出来的引力能。随着1973年苏联科学家夏库拉和桑雅耶夫以及1974年美国科学家佩吉和索恩建立了标准吸积盘模型,最终超大质量黑洞吸积模型成了类星体和赛弗特星系等活动星系核能源机制的标准模型。
除了类星体和赛弗特星系等辐射能量巨大的活动星系的中心存在超大质量黑洞外,正常星系的中心是否也存在超大质量黑洞呢?1969年,林登贝尔指出一旦类星体中心的黑洞周围没有物质可以被黑洞吸积时,它们就会变成“死亡”的类星体,成为不活跃的正常星系。因此,许多正常星系中心也都会存在质量高达百万到几十亿倍太阳质量的超大质量黑洞。1971年林登贝尔和瑞斯还论证了银河系中心应存在一个超大质量黑洞,并提出利用射电波段的甚长基线干涉技术应能确定银河系中心黑洞的大小。
如何“看到”黑洞?
发现近邻星系中心的超大质量黑洞
尽管在20世纪60年代科学家就提出正常星系中心存在大质量黑洞,但观测上证实这一点却非常困难,因为需要超高空间分辨率的观测才能给出令人信服的证据。
利用地面大型光学望远镜,天文学家在20世纪80年代就开始对几个非常近邻的正常星系如M31和M32的中心区域开展了光谱观测,试图利用吸收线光谱示踪的气体运动来得到中心黑洞存在的证据,但鉴于空间分辨率有限,结果有很大不确定性。直到1990年哈勃空间望远镜发射后,这一情况才得以显著改善。哈勃望远镜具有高达0.1角秒的空间分辨率,观测能力往往比地面望远镜高上10倍,它在1995年后对近邻星系中心的观测极大地改善了原来地面望远镜的观测结果,而且还对很多更遥远星系的中心区域进行了观测,精确测量了这些星系中心超大质量黑洞的质量。
测量近邻星系中心黑洞质量的方法一般有三种,即利用中心黑洞周围恒星、电离气体以及微波脉泽动力学方法。前两者被大量应用于哈勃望远镜及地面光学红外望远镜对几十个近邻星系中心黑洞的观测中。近20年来,利用计算机控制望远镜镜面形状的自适应光学技术普遍应用于地面大型望远镜的红外波段天文观测中,通过镜面变形有效消除地球大气的影响可获得高达0.01角秒的空间分辨率。
德国天文学家根泽尔和美国天文学家盖兹基于这一技术分别利用位于智利的甚大望远镜和美国夏威夷的凯克望远镜对银河系中心黑洞周围几十颗恒星的运动进行了长达20多年的红外波段监测,确定银河系中心黑洞质量为400万倍太阳质量(两人与彭罗斯一起分享了2020年诺贝尔物理学奖)。
自1995年以来,利用射电望远镜干涉的微波脉泽动力学方法通过探测围绕黑洞运动的分子气体盘的开普勒运动,并结合干涉技术所具有的毫角秒级超高空间分辨率,科学家可以非常准确地测量一些近邻星系中心的黑洞质量。
近几年,这一技术也扩展到通过利用毫米波阵列望远镜(如智利的ALMA)探测一氧化碳分子气体的运动来测量近邻星系的中心黑洞质量。美国天文学家通过对星系NGC135和NGC4261的ALMA望远镜观测,得到其中心黑洞质量分别为20.8亿和16.7亿倍太阳质量。