在微观世界里建造“液体之门”(科技自立自强·青年科学家)

光山新闻网 采集侠 2023-04-19 06:51:07
浏览

  厦门大学教授侯旭长期致力于液基材料系统的研究。他聚焦多学科交叉前沿,在微观世界打造一个“液体之门”。从组建课题组团队到搭建实验室、自主开发科研仪器,侯旭带领团队潜心研究“液体门控”的新机制与技术应用,踏上“从0到1”的科研路。

  

  在微观世界打造了一个“液体之门”,实现物质的高效可控运输与分离——这是厦门大学化学化工学院、物理科学与技术学院双聘教授侯旭的研究。

  聚焦多学科交叉前沿,今年40岁的侯旭长期致力于液基材料系统的科研,用以提升膜材料的功能与稳定性。他首创和引领的液体门控技术位列世界权威化学组织——国际纯粹与应用化学联合会发布的2020年化学领域十大新兴技术。在侯旭团队的努力下,“液体门控”在化学化工、材料科学、生物医学、能源环境、航空航天等领域不断开花结果。

  刹那灵感,勇闯“无人区”

  侯旭的办公室里有一张小型棕色双人沙发。沙发上坐过化学化工领域的专家、研究材料科学的学者,也有生物医药专业的学生、人工智能工程师……作为在多学科交叉前沿开展研究的青年科学家,侯旭的朋友圈覆盖物理、化学、生物、医学、工程、信息等多个领域。

  2006年,侯旭从四川大学生物医学工程专业毕业,被保送至国家纳米科学中心攻读物理化学博士学位,2012年又前往国外进行膜科学相关的仿生材料应用科学的博士后研究。从生物医学到物理化学,再到仿生材料科学,对侯旭而言,这段跨多学科的求学经历是宝贵的财富。“不同学科知识的碰撞,让我接触了更加多元的科研思维方式,支撑我尝试交叉学科研究。”侯旭说。

  博士后研究期间,侯旭在一次分离实验中发现,通过简单的压力变化,就可以利用液体开启关闭气体与液体的输运。液体是否也可以成为“门”?

  侯旭介绍,在微观世界,大面积的固体膜材料表面具有难以避免的缺陷。固体膜无法完全阻隔微小物质的传输,也会造成途经物质的残留,时间一长,膜材料就会被污染甚至堵塞,这正是污水处理、空气净化、海水淡化等场景中的痛点。

  但液面没有这种缺陷。“液体的流动性能使材料表面达到分子级的平整。若将液体稳定在固体多孔膜中,让多孔膜作为‘门框’,液体作为‘门’,在压强作用下,‘液门’关闭时,即使是气体分子也无法通过,而‘液门’打开时,就可以实现物质的快速运输与分离。”侯旭打了个比方,“就像给微观世界的‘水帘洞’安上智能开关。”

  从刹那的灵感出发,侯旭等人于2015年首次提出“液体门控机制”的概念,踏进未知的“无人区”。2016年,侯旭入职厦门大学,成为双聘教授,组建课题组团队、搭建实验室,潜心研究“液体门控”的新机制与技术应用。

  脚踏实地,从奇思到现实

  踏上一条“从0到1”的科研之路,没有前人研究可供参考,更缺乏“称手”的研究工具。

  研究初期,为连续观察和测量微观尺度的压强,侯旭购置了传感器、电源和显示器等配件,简单拼装了一个测压设备,“数据全靠手抄,一秒就要抄一个数据,抄完后再把数据录入电脑换算,并进行分析,一天只能做两三组实验。”侯旭说。

  为更高效地开展实验,侯旭团队自主开发了先进的测试仪器和装置系统。液门流体跨膜压强测试仪就是其中之一,这是一台平板电脑大小的银色方盒,可以实时监测流体跨膜过程中的压强变化并开展性能分析,同时实现触屏操作、远程监控、云端输出与分析等功能,能明显提高实验效率。