大模型发展提速 中文语料够“吃”吗(2)
然而,关于版权类语料使用,数据提供者和大模型厂商持有不同见解。王峥认为,大模型对版权类训练语料的使用属于转换性使用,而非复制式拷贝,应构成“合理使用”或“法定许可”。
上海世纪出版集团数字出版部副主任刘寅春对此持有保留意见。她指出,大模型的深度学习机制与人类学习有相似之处,使用版权类数据进行训练,类似于人类阅读文献后撰写论文而不标注参考文献。“从学术规范上来说,这种做法很难说没有瑕疵。”她说。
此外,大模型厂商训练大模型的最终目的是商用,这与“合理使用”的初衷和前提并不相符。“法定许可”需要满足一定条件,包括说明作品的出处、作者姓名,并支付报酬。如果这些条件无法满足,那么在显性法律释义下,这种行为很难构成“法定许可”。
在人工智能时代,高质量数据集是出版行业的核心资产。刘寅春认为,在有利于行业健康、可持续发展的前提下,切实保障知识产权,对高质量数据集进行有效开发和高质量转化,是出版行业的核心。
“出版行业为大模型提供语料,相应地,大模型的技术进步、功能提升,也应惠及包括出版行业在内的更广泛群体。”刘寅春提倡以合作共赢的方式与大模型厂商开展数据交易,通过订立授权协议,明确授权范围和条件,实现共同发展。
“如何将出版物进一步加工为数据要素并有效、有序流通,是摆在出版人面前的新问题。”中国出版传媒股份有限公司副总经理张纪臣说,“但我认为这同样是新机遇,因为我国出版行业一直强调知识服务这一理念。将出版物作为语料使用,从而提供产品和服务能力,正是出版知识服务的产品化体现。”
数据开源分享动力不足
目前,我国可供大模型训练的优质数据资源呈碎片化、分散状态。
“特别是语料和科研成果等中文高质量数据集开放程度低,企业在训练大模型时使用的语料来源不透明、权属不明确,开源后存在合规风险,这导致企业更倾向于自行采集和使用数据,大模型数据流通机制尚未形成。”王峥说。
北京理工大学管理学院副研究员尹西明认为,需要构建一个市场化、互利共赢的数据共享机制,以促进高质量中文数据的积累和有效利用。
“确立清晰的数据要素市场制度对于激发高质量数据集构建至关重要。”在复旦大学教授、上海市数据科学重点实验室主任肖仰华看来,只有当市场机制能够确保数据贡献者获得合理回报时,才能吸引更多的数据流入市场,充分挖掘并实现数据共享的巨大潜力与价值。
2023年12月31日,国家数据局等部门印发《“数据要素×”三年行动计划(2024—2026年)》,强调坚持需求牵引、注重实效,试点先行、重点突破,有效市场、有为政府,开放融合、安全有序4方面基本原则。
该行动计划进一步明确,要提升数据供给水平,在科研、文化、交通运输等领域,推动科研机构、龙头企业等开展行业共性数据资源库建设,打造高质量人工智能大模型训练数据集。
事实上,作为数据流通领域中最大的“富矿”,公共数据开放的步伐正不断加快。《全国数据资源调查报告》显示,2023年,我国公共数据开放量同比增长16%;省一级政府的开放数据量同比增长了18.5%,北京、浙江等15地数据管理部门开始探索公共数据授权运营机制。