大模型如何抢抓“新风口”(2)

光山新闻网 采集侠 2024-08-15 10:18:02
浏览

如今,各类面向细分行业的垂直大模型“百花齐放”,在工业、医疗、气象、教育、科研等领域尽展风采。与此同时,业内人士表示,大模型发展也面临一些问题和挑战,比如出现了“一窝蜂”“百模大战”现象。

长远来看,大模型相关企业应如何布局“落子”、在激烈的竞争中脱颖而出?抓住应用需求是突围方向之一。

中科院院士姚期智认为,大模型在技术上可分为通用、行业、场景三类。大模型的通用智能必须细化到各个行业,给它“投喂”行业中的专业数据,通过训练形成场景化、定制化、个性化的专有模型,才能给各垂直领域带来人工智能革命。

“大模型研发投入高,需要庞大的算力资源,关键在于聚焦特定领域、专攻细分赛道、解决行业需求。”朱东宇说。

科大讯飞董事长刘庆峰表示,面向未来,要关注源头技术生态、智能体生态、应用生态和行业生态,实现大模型深度落地。

“落地行业应用将更显大模型的价值,但基础大模型缺乏行业专业知识,需要大模型提供方与垂直行业合作开发行业大模型。”中国工程院院士邬贺铨说,大模型不仅是一种技术,它重塑了数据要素生态链,引领产业研究开发应用的范式变革,标志着信息化发展从网络驱动到数据驱动转变。

在邬贺铨看来,面对大模型浪潮,要在国家战略与规划部署下,统筹推进政产学研用,引导“百模”形成合力,避免资源分散和低水平重复,实现数据采集汇聚、加工处理、流通交易、开发应用全链条协同。

补齐短板,多领域布局“落子”

数字经济时代,算力就像水、电一样,成为不可或缺的公共资源。

“发展大模型产业,算力是‘门槛’。随着大模型参数的增加,其对算力的需求几乎是几何级增长。”一位人工智能专家如是说。

国家数据局局长刘烈宏介绍,我国加快推动数据基础设施布局,深入实施“东数西算”工程,推动构建全国一体化算力网,在算力布局、网络传输、监测调度、算电协同、安全防护等方面取得积极进展。

据统计,截至2023年底,我国算力总规模达每秒230百亿亿次浮点运算,算力总规模居全球第二。

当前,多地围绕数字基础设施建设,特别是算力产业发展,出台了一系列政策举措——

上海市将推动智能芯片关键技术和应用适配,打造更多元开放的智能计算生态;贵州省努力打造具有国际竞争力的国产智算高地,推动智算中心建设,实现行业大模型应用场景开放,吸引更多数据标注、数据治理和数据训练等领域企业,培育以人工智能为驱动的智算产业生态……

同时,也要看到,目前我国在算力领域依然存在短板,制约了大模型规模化应用。

中国移动浙江公司党委书记、董事长、总经理杨剑宇建议,完善全国算力网络一体化规划,适度超前统筹建设智算中心和超算中心,构建国家级算力智能调度体系,推动建设布局合理、资源多样、覆盖全面的先进算力供给体系。针对长三角等算力需求旺盛的重点区域,加大对国家枢纽节点、边缘算力等方面的政策、资金配套支持力度,支持开展智算技术研发重大工程。

“苟日新,日日新,又日新”。从全球看,我国大模型自主创新能力有待进一步提升。

国家信息中心信息化和产业发展部主任单志广认为,当前,我国数字经济领域关键技术受制于人的局面尚未得到根本改变,人工智能关键算法整体上处于跟随态势,基础原创能力不强,在大模型领域与一些科技巨头相比存在差距。