从预言走到眼前 人类有史以来首张黑洞照片诞生的背后(2)
广义相对论预言,由于黑洞的存在,人们将会看到中心区域存在一个由于黑洞视界而形成的阴影,周围环绕一个由吸积或喷流辐射造成的如新月状的光环。黑洞阴影则是人类能看到的最接近黑洞本身的图像。
“由于黑洞的尺寸正比于它的质量,黑洞质量越大,黑洞阴影越大。”沈志强说,此次拍照选择的主角——M87中心的黑洞质量巨大,又相对接近地球,是从地球上看过去角直径最大的黑洞之一,也因此成为黑洞成像的一个完美目标。
在天文学家捕获的首张黑洞照片中,黑洞仿佛沉浸在一片类似发光气体的明亮区域中。“我们预期黑洞会形成一个类似阴影的黑暗区域。这正是爱因斯坦广义相对论所预言的,可我们以前从未见过。”EHT科学委员会主席、荷兰奈梅亨大学教授海诺·法尔克(Heino Falcke)解释,“这个暗影的形成,源于光线的引力弯曲和黑洞视界对光子的捕获。暗影揭示了黑洞这类迷人天体的很多本质,也使得我们能够测量M87中心黑洞的巨大质量。”
给黑洞拍照有多难
给黑洞拍照到底有多难?有人这样比方,“就像我们站在地球上去观看一枚放在月球表面的橙子。”
2012年就已参与黑洞观测的中国科学院上海天文台研究员路如森说,这个比方一点不夸张。给黑洞拍照有几大难点:首先是选择合适的拍照对象,然后要共同合作组成一个超级大望远镜,还必须在合适的观测波段——毫米波。“观看电视节目必须选对频道,对黑洞成像而言,在合适的波段进行观测至关重要。”他告诉记者,这对设备精度和灵敏度的要求极高,同时需要“天时地利”的配合。去年4月间的全球观测恰逢历史上最好的天气,取得的数据非常理想。
用什么样的“相机”才能实现给黑洞拍照的宏大计划?这一次的阵容堪称“地球级别”。全球科学界将分布在世界各地的8个射电望远镜(阵)“组合”起来,形成一个口径如地球大小的“虚拟”望远镜,所达到的灵敏度和分辨本领都是前所未有的。可以说,正是全球科学界同步的努力,让人类拍摄到有史以来首张黑洞照片。
路如森告诉记者,创建EHT是一项艰巨的挑战,需要升级和连接部署8个现有的射电望远镜来组成全球网络,这些望远镜分布在各具挑战性的高海拔地区——包括夏威夷和墨西哥的火山、亚利桑那州的山脉、西班牙的内华达山脉、智利的阿塔卡马沙漠以及南极点。科学家们在这些观测台站昼夜不停地记录、分析,2017年4月的EHT观测中每个台站的数据率达到惊人的32Gbit/s,8个台站在5天观测期间共记录约3500TB数据。如果是这么多电影的话,至少要几百年才能看完。
这一次给黑洞拍照到底有多精确?达到的分辨率约20微角秒。“相当于在巴黎的一家路边咖啡馆,可以读到纽约的报纸。”路如森打了这样一个比方。
虽然这些射电望远镜没有实际连接,但借助氢原子钟精确计时,各台望远镜实现了数据记录的同步。这些数据被存储在高性能的充氦硬盘上,随后被空运至马普射电所和麻省理工学院海斯塔克天文台,在那里,被称作相关处理机的高度专业化超级计算机对各个台站数据进行处理。最后,借助合作开发的新型计算工具,这些数据被精心处理并用来生成图像。
沈志强介绍,此次黑洞成像采用的是1967年出现的甚长基线干涉测量(VLBI)技术,观测波长是1.3毫米,并且将有望扩展到更短的0.8毫米。值得一提的是,VLBI技术也成功应用于我国嫦娥探月工程的探测器的测定位。
全球科学界合作的典范
记者了解到,参与此次事件视界望远镜大型国际合作项目的科研人员达200名之多,其中,来自中国大陆的学者有16人,分别来自上海天文台8人、云南天文台1人、高能物理所1人、南京大学2人、北京大学2人、中国科学技术大学1人、华中科技大学1人。另外,还有部分来自中国台湾地区的学者。