“好刀”尚需“开锋”(2)
散裂中子源产生的中子,与其他研究手段相比更容易穿透物质,在探测物质的微观结构和动力学特征方面,中子源具有独特的优势。中国散裂中子源是物理、化学、材料等多领域进行科学实验重要的“超级显微镜”。
中子源产生中子,只是开展实验的第一步,提取和分析数据,则必须依靠谱仪,没有匹配的谱仪,相关实验就无法开展。
陈延伟介绍,由于经费限制,中国散裂中子源一期仅建设了3台谱仪。散裂中子源第一轮开放申请,用户十分踊跃,但目前3台谱仪远不能满足用户的实验需求。“希望国家加快后续谱仪建设。”
“近期,我们举办了有100多位国内外学者参加的软物质生物中子研讨会,会上关于加快散裂中子源二期谱仪建设的呼声非常高,十多位国外资深专家也对目前散裂中子源只有3台谱仪感到不可思议。”洪亮告诉记者。
洪亮说:“在某些学科领域,科研竞争不占优势,很大程度上是因为机理研究不到位,关键问题没有攻克,开展机理研究还需充分利用大科学装置。”
北京科技大学新金属材料国家重点实验室教授王沿东也告诉《中国科学报》:“国家重点实验室承担着重要的科研任务,很多关键实验必须在国内开展,但因为受国内仪器条件限制,在国内开展又困难重重。我们迫切需要增加相应的谱仪设备,这对解决国家‘卡脖子’技术具有重要意义。”
王沿东还透露,美国一些实验室有明确规定,禁止我国某些高校在这些实验室开展实验。即使能够通过实验机时申请,签证也可能因为各种原因无法顺利办理。加快完善谱仪/线站后续建设,提升国内大科学装置利用率,“形势非常紧迫!”
后续建设制度不完善
中科院高能物理研究所东莞分部副主任梁天骄告诉《中国科学报》:“中子散射可用于研究物质微观结构和物质微观动力学。但中国散裂中子源现有的3台谱仪都是研究微观结构的,因缺少研究微观动力学的谱仪,该领域的研究在中国散裂中子源还无法开展。”
“日本散裂中子源于2001年动工,2008年完成建源并配备10台谱仪,2008年至2014年间,其规划设计中的21台谱仪基本建成。”曾在日本散裂中子源工作过的李昺告诉记者,“我们目前做实验急需的较高端的谱仪——高能量分辨率非弹性散射谱仪,在日本先期建设的10台谱仪中就早已配置。”
陈延伟也告诉记者:“日本的第一个同步辐射装置于1983年建成,一期建设了加速器及5条光束线,在随后的5年内,很快建设了28条光束线。”
相比之下,国内大科学装置后续建设启动过于缓慢。
中科院高能物理研究所原副所长张闯说:“我国的大科学装置建设之初也都有整体计划,后续建设项目则按五年期新建项目进行规划安排。”
这种管理模式存在诸多问题和弊端。专家们认为,对于有后续建设计划的项目,应该在一期建设中就进行必要的安排和投入。
此外,由于项目不得不以五年规划开展,后续项目建设的时效性也会受到影响,包括影响大科学装置整体效益的发挥,同时也不利于管理部门对投入总量的宏观把控。
王沿东认为,项目机制应提高灵活度,例如美国的一些实验室在立项时会考虑尖端设备研发过程中的不可预见费,包括考虑通货膨胀等问题,可能申请时价值几千万的仪器,在实际建造时会上涨至亿元,这就需要更加灵活的机制保障项目的后续建设。
专家建议,审定批准的后续建设项目应不受五年规划期限制,适时申请、简化程序、及时审批、尽快启动,合理地快速推进。
谱仪人才缺乏