层层传“热”:海水淡化效率倍增

光山新闻网 林晓舟 2020-02-26 11:54:49
浏览

 
 
层层传“热”:海水淡化效率倍增  
 

海水三千,取之一瓢,化其为淡,可解全球用水短缺之难。

海洋面积占地球表面的71%,可供人类饮用的淡水面积却只占2.5%。联合国新发布的《世界水发展报告》指出,目前仍有超过1/4的人口生活在水资源严重稀缺的地区。

海水淡化技术被认为是缓解淡水紧缺的途径之一,有效解决了沙漠、海岛及沿海发达地区的“干渴”问题。然而,诸多技术需要完备基建支撑、集中式安装和大量能源供应,这些都成为制约其广泛应用的重要因素。

近日,上海交通大学制冷与低温工程研究所教授王如竹和副教授徐震原等人组成的ITEWA(能源—空气—水)创新团队与美国麻省理工学院(MIT)团队合作,设计出局部加热型多级太阳能蒸馏技术,创纪录地实现了385%的太阳能蒸发效率和5.78/L(m2·h)的产率,比此前的效率纪录高约两倍,为实现超高效的被动式太阳能海水淡化提供了全新思路和理论框架。相关研究论文已发表于《能源与环境科学》杂志。

热量损失效率低

全被动式的太阳能海水淡化被认为是解决海水淡化适应性的有效技术之一。

“被动式太阳能蒸馏器通过太阳能加热产生蒸汽,并依靠冷凝收集淡水,具有运行简单可靠和适用范围广等优势,对偏远地区和基建落后地区尤为重要。”论文第一作者、上海交通大学机械与动力工程学院副教授徐震原告诉《中国科学报》。

在被动式太阳能海水淡化中,最常见的系统为单级盘式太阳能蒸馏,其理论效率约为60%,但实际运行效率却只有约35%。低效率也导致该系统产水成本高且面积需求大,严重限制了其广泛使用。

近年来,已有研究表明,界面局部加热的太阳能蒸发通过将太阳能光热转换置于气液蒸发界面,大幅度提升了太阳能蒸发效率,最高可达到94%。这使得界面局部加热的太阳能蒸发研究成为了能源科学、材料科学和热科学关注的焦点。

但徐震原和团队成员查阅文献时发现,文献中所提到的“界面蒸发”在真正应用于海水淡化实验时,效率并不高。他们分析,其中的原因就在于没有对冷凝热加以利用。

当气体凝结为液体时,释放出的热量便被称为冷凝热。在传统的界面太阳能蒸汽冷凝过程中,其蒸汽焓被释放到环境中。

“回收蒸汽焓是进一步提升能量转换效率的关键。”徐震原解释说,尽管太阳能界面蒸发效率很高,但如果对蒸汽焓不加以利用,太阳能—蒸汽转化效率上限仅为100%。

全局热能传递达到超高效

“全局传热传质优化是达到超高效太阳能海水淡化的关键。”论文通讯作者王如竹表示。

通俗来讲,全局传热传质就是将每一阶段海水冷凝过程中丢失的热量作为驱动下一阶段蒸馏过程的热源,让每一阶段都充分利用前一阶段所释放的热量。

那么,技术上如何实现?研究人员猜想,如果把太阳能界面蒸发和多级冷凝热回收结合起来,肯定能有效果。但如何在小型系统装置里实现二者的有效结合,是个难题。

经过反复讨论和改良实验,研究人员最终设计出一个局部加热型多级太阳能蒸馏系统。第一层装置将吸收的太阳能高效转换为热能,并用于海水蒸发,蒸发过程产生的水蒸汽在冷凝薄板上凝结为淡水。而在后续多级装置中,前一级冷凝过程释放的热量作为热源传至下一层级,驱动蒸馏过程并获得淡水,其中最后一级冷凝产生的热能(冷凝热)将排放到海水中。