水深决定命运:湖泊中氮磷的角色扮演

光山新闻网 林晓舟 2020-03-12 21:07:03
浏览

 
 
水深决定命运:湖泊中氮磷的角色扮演  
 

TOC:湖泊内氮磷地球化学循环过程在浅水湖泊(左)和深水湖泊(右)中的示意图。在浅水湖泊中,湖体处于混合状态,氮损失(反硝化作用)加强,磷损失(沉积作用)减弱,且水动力扰动促进沉积物中磷的释放,最终导致氮磷比下降,往往表现为氮限制。然而,在深水湖泊中,一般只有湖泊混合层处于活跃状态,氮的损失降低,磷的沉降去除效率提高,导致氮磷比升高,主要表现为磷限制。.jpg

湖泊内氮磷地球化学循环过程在浅水湖泊(左)和深水湖泊(右)中的示意图。图片来源:中国科学院南京地理与湖泊研究所

富营养化与蓝藻水华控制究竟是控磷还是氮磷双控,一直是国际湖沼学界长期争而未决的问题。目前,富营养化控制策略主要基于小水体的营养盐添加模拟外源输入实验,但忽略了营养盐在湖泊内的生物地球化学循环过程。

总结和分析全球湖泊治理案例发现,磷(P)控制成功修复水体富营养化主要是在深水湖泊,如Geneva和Zurich湖(瑞士)、Lago Maggiore湖(意大利)、Constance湖(德国、瑞士和奥地利);氮和磷双控主要成功应用于浅水湖泊,如五里湖、Albufera湖(西班牙)、Tampa湾和Tohopekaliga湖(美国)。这些事实表明,湖泊的形态特征,如水深,可能在湖泊营养盐循环和富营养化中发挥着重要作用。

近日,中国科学院南京地理与湖泊研究所秦伯强团队通过收集整理全球湖泊形态与营养状况数据,揭示了水深对湖泊内氮磷营养盐迁移转化过程的影响,澄清了关于氮磷控制策略的长期争论,为解决湖库富营养化提供了解决方案。相关成果日前发表在环境领域国际期刊Environmental Science & Technology上。

本研究中湖泊的分布图.jpg

本研究中湖泊的分布图。蓝色代表深水湖泊,红色代表过渡型湖泊,绿色代表浅水湖泊。图片来源:中国科学院南京地理与湖泊研究所

研究团队从已发表的论文和湖泊数据库中,收集整理了全球573个湖泊的形态与营养状况数据。通过比较湖泊混合层深度(epilimnion)与平均和最大水深,将湖泊分为浅水湖泊(混合深度>最大深度)、深水湖泊(混合深度<平均深度)和过渡型湖泊(平均深度≤混合深度≤最大深度)。此外,以TN:TP比值(质量比)作为湖泊氮磷限制指标,当N:P < 9时为氮限制,当9≤N:P < 22.6时为氮磷双限制,当N:P≥22.6时为磷限制。

科研人员发现,TN、TP和Chl a随着湖泊水深的增加和迅速降低,富营养化和蓝藻水华在最大水深小于20 m的湖泊中较为常见,结果表明浅水湖泊相较于深水湖泊更易富营养化和暴发蓝藻水华。此外,基于氮磷比,38.7%的湖泊表现为氮限制,94.4%的湖泊表现为磷限制。磷限制在浅水、过渡型和深水湖泊中分别为87%、97.5%和91.9%,而氮限制分别为66.2%、35.4%和33.2%,表明虽然磷限制在湖泊中普遍存在,但浅水湖泊中更易出现氮限制。随着湖泊营养水平的提高,氮限制出现的可能性增加,而磷限制则降低,且在富营养化湖泊中主要表现为氮和磷双限制。