钌单原子催化剂诞生 氢能源利用再下一城
上图:氧析出和氧还原反应被称为氢能高效利用领域的两大圣杯。然而,在酸性氧析出运行环境中,不仅需要高过电位而且催化剂的稳定性很差,这就导致氧析出的动力学极其缓慢。
下图:吴宇恩教授课题组制备了一种单原子钌催化剂,可使酸性氧析出仅需要较低过电位,极大地加快了氧析出过程。/美术设计:崔劼
当电流通过水时,会产生氢气和氧气,氢气在氧气中燃烧,得到的产物是水。化学公式循环往复,这些中学课本上的内容为人所熟知。
过去的一百多年里,科学家一直在试图让反应过程变得更快。电解水析出氢气和氧气作为整个反应中的两个部分,为了提高反应速率,需要分别找到合适的催化剂。
直到今天,氢析出的相关催化技术已经发展得较为成熟,但氧析出还没有找到更高效廉价的催化剂。这是氢能源领域悬而未决的难题之一,业内将之与非铂氧还原催化剂的研发并称为两大圣杯。
如今氧析出催化剂的圣杯即将被中国科学家捧走。中国科学技术大学教授吴宇恩团队在今年4月的《自然—催化》上发表封面文章,其制备的钌单原子合金催化剂大大加快了氧析出过程,有望降低氢气制备成本。
探寻终极能源的终极制法
氢气作为无污染、零排放的“终极能源”,其应用前景一直被看好。
论文共同第一作者、吴宇恩课题组博士生么艳彩告诉《中国科学报》,目前工业中较为常用的制氢方法是化石燃料制氢,比如“甲烷水蒸气重整”——让甲烷与水反应,生成一氧化碳和氢气。但因为用到的是化石燃料,面临着碳排放等环保问题。
电解水制氢则没有碳排放的担忧,且工艺过程简单,有望成为下一代制氢的清洁方法。
根据电解质的不同,电解水制氢又可分为酸性电催化制氢和碱性电催化制氢,么艳彩告诉记者,由于目前工业上还没有可以与碱性电解水匹配的碱性膜,而酸性膜已经是一种成熟的技术,所以酸性电解水工业化前景更佳。
为了提升电解水制氢效率,找到合适的催化剂可不简单。这意味着催化剂既要做好自己的本职工作——加速反应,同时还要“坐怀不乱”——避免在反应过程中被过快地消耗掉。这两种特性也被称为活性和稳定性。
目前,在酸性条件下的电解水氧析出反应中,二氧化铱因为优异的活性和稳定性被广泛使用。但金属铱作为一种稀有的贵金属材料,价格较为昂贵,每克的市价约为240-250元。
科研人员算了这样一笔账:工业上通过二氧化铱电解水制氢的成本是每千克33-38元,而产生相同能量所需要的汽油成本是每千克25-29元。
也就是说,若想用好氢气这个终极能源,人们还得想办法把成本再压一压。
超强催化剂
吴宇恩课题组瞄准了另一种催化剂——钌,钌是一种稀有的金属元素,但在地球上的储量更丰富,每克19.5-20.5元的市价和铱相比,已经友好得多。
目前商用的钌基催化剂大多为二氧化钌。这种催化剂虽然有出色的活性,但在反应过程中表现得过于“热情”:在强酸、强氧化环境下,二氧化钌中的晶格氧会参与到氧气析出的过程中。短短数小时内,催化剂活性就会大幅衰退。
既然钌和氧在一起这么欢脱,那把单个钌原子拿出来会不会专心干活?
这正是吴宇恩课题组多年来的研究重点:让钌以单原子形式作为催化剂参与到氧析出反应中。