透视新冠肺炎死亡率排名前20国家,3点结论值得关注(2)

光山新闻网 林晓舟 2020-05-05 23:09:11
浏览

如何解释这种与传统认知相背离的现象呢?如果说人类发展指数与平均受教育年限仍然属于比较虚的指标,与疫情关系较远的话,那么我们再来看一下比较硬的指标:人均GDP的高低对于新冠肺炎的死亡率是否有直接影响?见图3:

透视新冠肺炎死亡率排名前20国家,3点结论值得关注

从图3可以看出,除了德国、加拿大、丹麦等少数国家人均GDP高,死亡率也低,这与我们的传统认知相符外,大多数人均GDP高的国家其死亡率也高,这种现象又一次违背我们的常识。

由此看来,在新冠肺炎面前有钱没钱一视同仁,至少从数据上看是这样的。那么,在此基础上我们再往前推进一步,是否护理资源充分的国家会让死亡率降低呢?毕竟护士是直接参与救助患者生命的人。

护士指标我们采取每千人中拥有的护士数量来衡量,具体国家的情况见下图4:

透视新冠肺炎死亡率排名前20国家,3点结论值得关注

从图4中可以看出,仍然是只有少数几个国家的表现符合我们的预期,即护士数量多的地区,患者的死亡率会随之降低,如加拿大、丹麦与德国符合我们的初始判断。

从图上可以看出大多数西欧国家拥有较多的护士数量,但其死亡率仍然较高,这与我们的预期是相反的。

上述4个指标都是我们念兹在兹、朝思暮想的指标,然而统计数据显示,这些指标竟然对于新冠肺炎作用不大,为何对于新冠肺炎疫情我们的常识大多不靠谱?

为了解释这个现象,利用EXCEL软件自带的回归分析工具,我们对于上述20个国家的死亡率与4个自变量做了简单回归分析,具体结果见下图:

1、死亡率与人类发展指数(HDI)的回归结果:

透视新冠肺炎死亡率排名前20国家,3点结论值得关注

从回归结果来看,人类发展指数与新冠肺炎死亡率之间仅呈现弱正相关(0.185239),从显著性指标P值来看,已经达到0.434。

2、死亡率与受教育年限的回归结果:

透视新冠肺炎死亡率排名前20国家,3点结论值得关注

死亡率与受教育年限两者之间的相关性仅为0.0315,相当于没有关系,通过P值(0.8949)可以看出,由于P值太大,导致模型为真的概率仅为10.5%左右。

3、死亡率与人均GDP的回归结果:

透视新冠肺炎死亡率排名前20国家,3点结论值得关注

死亡率与人均GDP之间的相关性仅为0.073,太微弱,相当于没有关系。P值(0.76)太大,导致模型为真的概率仅有24%左右。

4、死亡率与每千人拥有护士数量的回归结果:

透视新冠肺炎死亡率排名前20国家,3点结论值得关注

死亡率与每千人拥有的护士数量之间的相关性仅为0.041,相当于没有多大关系,该回归的P值(0.864)实在太高,跟我们常识相距最远(护士直接照顾患者,在我们的常识理解中,这应该是与降低死亡率高度负相关的)。

那么是不是这些被我们所看重的要素都不重要了呢?

显然不是,一方面说明单要素对复杂风险作用有限;另一方面也凸显了新冠肺炎病毒的复杂性,抛开科学层面的因素不谈,在社会治理上也需要多管齐下。

我们对四变量采取多元回归,结果的显著性增加不少,这也间接佐证了上述说法。

透视新冠肺炎死亡率排名前20国家,3点结论值得关注

多元回归的结果显示,相关性已经达到0.504,P值也降为0.323,模型为真的可能性上升到67%,虽然还是很不理想,但已经显示出某种协同的力量。