目标导向,牵引基础研究(一线调研·加强基础研究)(2)
业界专家评价,该技术迈向产业化,将为我国进一步摆脱对原油进口的依赖,实现煤炭清洁利用提供一条新路线。“这个点子为什么我们没先想到?”了解包信和团队思路后,德国某著名跨国化学公司的资深专家感慨。
2019年,该装置完成单反应器试车,低碳烯烃选择性优于75%;2020年成功完成工业全流程试验,正加速工程化转化和工业示范……从实验室到工厂,“纳米限域催化”研究实现了从基础研究到应用工程的跨越。
“在实验室,催化剂可能只需1克,在工厂工业试验,催化剂则要1吨。任何一个环节微小的差异,都可能给示范项目造成很大损失。”潘秀莲说,工业试验项目进展顺利,得益于不同团队的协同攻关,也源于扎实的基础研究,“对催化机理了解越清楚,做工程应用自然就越有信心。”
开发新型材料,北京理工大学王博团队——
瞄准产业痛点
推进基础研究
去年10月,国际期刊《科学》刊发报道:北京理工大学王博教授团队开发的一种新型功能多孔材料,能够大幅提高燃料电池功率密度,有望破解氢能规模利用的关键难题。
氢燃料电池功率上不去,源头在燃料电池催化层气固液三相界面中质子导通受阻以及气、水输运不畅。攻克这一应用堵点,提高催化层的传质效率是突破口——这相当于为化学反应建设一条通畅的道路。
受制于材料,电化学反应的“路”要么太窄,要么太堵,路况也不好。“卡在催化层,就像路修到了镇上,却因为村里还是山路、土路,车子开不进去。”王博说,团队的工作就是要在“村”里修高速路。
功能多孔材料,特点是内部有“孔”,就像纳米尺度的蜂巢一样,比表面积大。全部展开,1克材料可以覆盖一个标准足球场。突破传统材料束缚,王博团队首次构筑燃料电池多孔离聚物。经实验测试,应用于催化层,显著降低氧气传质阻力,使商业铂碳催化剂的质量活性和燃料电池的峰值功率密度均提高1.6倍。
产业痛点明确,其他科学家也在研究功能多孔材料,为什么王博团队能实现突破?
“这源于团队对材料的深刻理解。”王博聊起攻关历程。近20年积累,在孔道结构设计、客体分子与孔内界面相互作用调控、孔内物质传输机制等方面,团队攻克了一系列关键问题。
基础研究扎得牢,应用需求摸得清,团队才能够针对关键问题设计并研制出想要的材料。像氢燃料电池一样,发现产业应用中的痛点,从基础上找源头、找答案,王博团队解决了不少问题。比如,团队开发的功能多孔材料已经应用到海水淡化、生物杀菌、氢气纯化等领域。
近年来,王博团队瞄准产业“卡脖子”难题,开拓功能多孔材料应用。破解产业问题,反过来也牵引基础研究发展。“发现新用途后阐释背后机理,或者为了特定用途开发新材料,都推动基础研究向前。”在王博看来,“解决产业难题和推进基础研究,两者相互促进。”
“科研不是孤芳自赏,要解决真问题。”王博认为,目标明确的基础研究,是在强约束下做科学探索,“必须用新办法突破鱼与熊掌不可兼得的困境,而关键创新往往正是来自这样需求具体、边界清晰的问题。”
探索基础前沿,兴趣驱动力不可少;瞄准特定目标,个人又要为团队服务。经过多年实践,王博团队走出了一条“特种兵”与“尖刀连”相结合的基础研究组织模式。