关于“摄猎”黑洞的八大天问(2)
与光学照片一样,清晰度根源于分辨率。要提高望远镜分辨率,可从两方面努力:一是降低观测频段光子的波长(等价于增强能量),二是增加望远镜的有效口径。利用全球不同地方的望远镜联网,我们得到了一个口径超大的望远镜,并在相关技术相对成熟的射电波段内,选择了能量最高的毫米和亚毫米波段。
值得注意的是,有效口径取决于望远镜网络中相距最远的两个望远镜之间的距离。2017年,一系列亚毫米波望远镜加入观测,2018年北极圈内格陵兰岛的亚毫米波望远镜加入,基线长度增加,提高了分辨率。
虽然我们现在的亚毫米望远镜基线已达到了1万公里,但空间分辨率刚达到黑洞视界面的尺寸,所以在科学家们观测的有限区域内,就相当于只有有限的几个像素。在《星际穿越》中,天文学家基普·索恩设想的黑洞形象——包括吸积盘的许多具体细节——都通过技术手段呈现了出来,然而在真实的情况下,我们在照片中只能看到吸积盘上的几个亮斑而已。
既然我们可以将两个望远镜放置得很远实现更高分辨率,那么能否只用两个望远镜来完成黑洞照片呢?很遗憾,不行。观测要求的不仅仅是分辨率,还有灵敏度——高分辨率可以让我们看到更多的细节,而高灵敏度则能够让我们看到更暗的天体。
③视界望远镜2017年开始拍摄,近日才发布成果,为什么这张“简单”且“模糊”的照片“冲洗”了两年之久?
首先,望远镜观测到的数据量非常庞大。2017年,望远镜的数据量达到了10PB(10240TB),2018年又增加了格陵兰岛望远镜,数据量继续增加。庞大的数据量使处理的难度不断加大。
其次,在数据处理的过程当中,科学家也遭遇了不少技术难题——黑洞附近的气体处于一种极端环境当中,其运动有着非常多的不确定性——为了解决这些问题,科学家们还专门开发了特定的程序和工具。
再次,为了保证结果的准确性,在最终数据处理的时候,严谨的科学家们在两个不同的地方分别处理、分别验证。全世界范围内设立了两个数据中心,一个是位于美国的麻省理工学院,另外一个是位于德国的马普射电所。二者彼此独立地处理数据,也彼此验证和校对,保证了最终结果准确可靠。
④黑洞研究历时已久,4年前引力波已经让我们“听”到了来自黑洞合并的声音,为什么直到今天我们才“看”到黑洞的照片?
简单地说是因为黑洞区域实在太小了——而之前望远镜角分辨率或者放大倍数不够,在过去几年中,我们才真正实现了能够看到黑洞附近区域的分辨能力。
其实,早在2017年进行全球联网观测之前,全球很多科学家已经为此努力了十多年的时间,并且利用望远镜阵列当中的几个进行了联网尝试,探测了银河系黑洞附近的区域,结果确实在亚毫米波段探测到了周围的一些辐射,这给了团队很大的信心。
在此之前,尽管科学家们已经掌握了很多证明黑洞确实存在的电磁观测数据,但是这些证据都是间接的——少数科学家会提出一些怪异的理论来作为黑洞的替代物,因为我们并没有直接观测到黑洞的模样。
2016年探测到的双黑洞合并产生的引力波,更是让人们愈加相信黑洞的存在。但引力波是类似于声波的“听”的方式,而电磁方式是一种“看”的方式,对于更倾向于“眼见为实”“有图有真相”的人类而言,以直观的电磁方式探测到黑洞还是非常让人期待的。所以,在2016年初引力波被直接探测到之后,视界面望远镜并没有放弃观测,反而以全球联网的方式,把这一探测技术推向了极致。
⑤如此大费周章,除了满足人们“眼见为实”的心愿,黑洞照片对于验证相对论、揭秘星系演化有何意义?