我们究竟需要什么样的大模型?(4)
如果说数据和算力是大模型的硬件“基础设施”,算法则体现着更多“人”的因素。小冰公司首席执行官李笛认为,就训练大模型而言,参数的数量并不是最重要的,工程化过程中的调优才是真正的考验。“研发、训练一个大模型可能只需要一个月,但调优可能需要一年的时间。这个过程格外需要谨慎、细致、耐心,有足够的定力和专注力,也是一种‘工匠精神’的体现。”
耐心,是谈及大模型发展时多位业内专家反复提及的关键词。“大模型不是把数据‘喂’进去,算力一跑就有了。这其中有许多复杂细致的工作要做。”唐杰表示,人工智能自20世纪50年代被提出至今,其发展已经历过多次起伏,任何技术的发展都不是一蹴而就的,要对其有充分耐心。
(记者手记)
◎刘 艳
不要等大模型“无所不能”时才入局
ChatGPT让公众再一次体验到现代人工智能的强大功能,它背后的大模型技术及应用范式,将极大冲击现有人工智能产业研发路线、发展方式,并有望成为新一轮科技革命与产业变革的核心驱动力和新入口。
这一范式的变化,引发了全球大模型竞逐。中国工程院院士郑纬民认为,大模型是新型基础设施的关键底座之一,大模型的竞争也是国家科技战略的竞争。
谁都不想错过这一机遇,全球科技企业纷纷下场投身这一科技新赛道。在这一轮AI竞赛中,中国不能掉队。
《中国人工智能大模型地图研究报告》显示,从全球已发布的大模型分布看,中国和美国大幅领先,超过全球总数的80%,中国已形成了紧跟世界前沿的大模型技术群。
随着我国数字科技领军企业大模型悉数登场,各方思辨与争论不断,“百模大战”是否存在重复建设?垂直类大模型是否有建设的必要?
在百度创始人、董事长兼首席执行官李彦宏看来,新的国际竞争战略关键点,不是一个国家有多少个大模型,而是大模型上有多少原生的AI应用,这些应用在多大程度上提升了生产效率。他点出了一个浅显的道理,科技作用于社会、造福于人类,必会向不同行业延展。
先发者不一定制人。在大模型角逐中,全球基本形成了各有优势的中美两大集群,中国企业在推进大模型中表现得更加务实,依托中国强大的工业基础和丰富的行业应用场景,切入实体经济、制造业等行业,形成了“以场景架构大模型,以场景训练大模型”的路径。
大模型赛道上挤着形形色色的中美企业。有志于此的机构、产业在科技诞生促动期阶段“蜂拥而上”是技术发展的必然,也正因此,才有可能迎来技术的成熟和广泛应用,这种热情值得鼓励和包容。
技术的落地和产业的发展需要百花齐放,谁也不知道大模型未来的潜力到底有多大、其边界到底在哪。“百模大战”说到底是对不同发展路径的探索,也为大家提供了更多选项,人们乐见其成。即便有一小部分公司盲目跟风,市场也会优胜劣汰。
生成式人工智能进步速度惊人,我们是否需要担心它作恶?
不可否认,大模型的可控、安全至关重要,大模型热潮下社会各界的种种忧虑和思考无不切中要害。无论技术创新还是业务创新,“合规”是底线。在我国相关管理办法逐步出台的同时,针对大模型的通用能力应用到各场景,有可能发生的新安全隐私问题。产业各方已开始着手为大模型戴上“紧箍咒”,即用技术手段解决技术的“胡作非为”。
有抗拒有担忧,却也激发出更多创新可能。显然,积极拥抱这一未来服务载体和入口形式的重大变化,从国家到行业,皆已有迹可循。
就像有人说的,不要在新的工业革命到来之际袖手旁观,不要等大模型“无所不能”时才入局,现在就可以开始干了。(来源:科技日报)
(责编:申佳平、陈键)